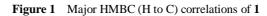
Diterpenoid Alkaloids from Aconitum racemulosum Franch var. pengzhouense

Chong Sheng PENG, Xi Xian JIAN, Feng Peng WANG*, Dong Lin CHEN

Department of Chemistry of Medicinal Natural Products, School of Pharmacy, West China University of Medical Sciences, Chengdu 610041


Abstract: A new diterpenoid alkaloid, racemulodine (1), was isolated from the whole plants of *Aconitum racemulosum* Franch var. *pengzhounense*.

Keywords: Aconitum racemulosum Franch var. Pengzhounense, Ranunculaceae, racemulodine.

From the whole plants of *Aconitum racemulosum* Franch var. *pengzhounense*, we have isolated a new diterpenoid alkaloid racemulodine **1**, together with atisinum hydrochloride, isotalatizidine, nevadenine, virescenine, 14-acetylvirescenine and anthranoyllycoctonine¹. In this paper, we report the structural elucidation of the new diterpenoid alkaloid racemulodine **1**.

Racemulodine 1^2 was isolated as colorless needles, and its molecular formula, $C_{21}H_{27}NO_4$, inferred from its MS and ¹³C NMR spectra. The IR and NMR spectra of 1 revealed that it belongs to the hetidine-type diterpenoid alkaloids, showing characteristic signals at $\delta_{\rm H}$ 2.45 (3H, s), $\delta_{\rm C}$ 41.6 q for the *N*-methyl group; $\delta_{\rm H}$ 1.16 (3H, s), $\delta_{\rm C}$ 22.5 q for an angular methyl group; 1692 and 1721 cm⁻¹, δ_C 208.6 s, 208.6 s for two ketone groups, and 3030, 1606 and 820 cm⁻¹, $\delta_{\rm H}$ 5.50 (1H, s), $\delta_{\rm C}$ 130.9 d, 140.3 s for a trisubstituted vinyl group, from HMQC (**Table 1**), as well as a typical signal at $\delta_{\rm C}$ 140.3 s for the C-16³. The 1H signal at δ 3.92 (hept, J=14.0, 2.0 Hz) and the 1H signal at δ 3.35 (d, J=5.6 Hz), which correlated with the carbon signals at δ 66.7 d and 76.9 d, respectively, in the HMQC spectrum, indicated that it had two secondary hydroxyl groups. The location and stereochemistry of the 2α - and 3α -hydroxyl groups were proved by showing the correlated peeks between the H-2 β ($\delta_{\rm H}$ 3.92) and H-3 β ($\delta_{\rm H}$ 3.35) in the ¹H-¹H COSY spectrum, and three-bond connections among the H-2 and C-10, the H-3 and C-5, C-18 as well as C-19, respectively, in the HMBC spectrum (Figure 1). The above mentioned assignments were also supported by displaying the presence of an NOE relationships between H-18 (δ 1.16, 3H, s) and H-5 β /H-3 β in the NOESY (Figure 2). The CD spectrum of 2 gave a negative Cotton effect ($[\theta]_{296}=3.0\times10^3$)^{4, 5}, in addition to three-bond connectivity of the H-20 (δ 3.06, d, J=3.2 Hz, HMQC δ_{C} 66.8 d) with C-13

 $(\delta_C 208.6 \text{ s})$ in the HMBC spectrum, strongly suggesting that one ketone group in 2 was located at C-13. The ¹³C NMR data of 1 and hetidine 2 (Table 1) ⁶ are very similar, except for C-8, C-9, C-13, C-14, C-15 and C-16, indicating that their differences were derived only from those on rings C and D. Thus, the structure of racemulodine was elucidated as 1.

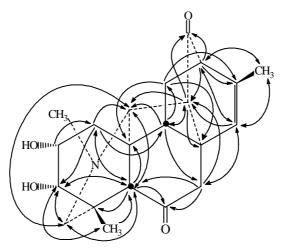
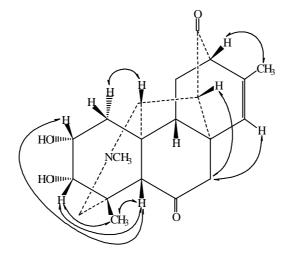



Figure 2 Key NOESY correlations of 1

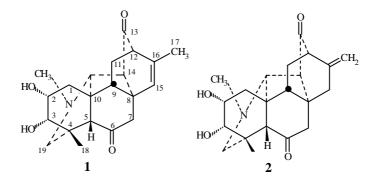


Table 1 NMR data of compound 1 (1 H: 400 MHz, 13 C: 100 MHz; CDCl₃) and 2 6

	1		2
Carton	δ _c	δ _H	δ _c
1	41.1 t	1.82 dd (14.2, 4.4) (β) 2.14 dd (14.2, 2.0) (α)	39.0 ^a (38.9) ^b
2	66.7 d	3.92 hept (W1/2=2.0)	66.7 (67.2)
3	76.9 d	3.35 d (5.6)	76.9 (77.6)
4	41.8 s	_	41.8 (41.9)
5	58.1 d	1.85 s	58.2 (57.9)
6	208.6 s	_	208.4 (208.9)
7	51.8 t	2.79 br.s	52.1 (52.3)
8	44.4 s	_	41.2 (40.7)
9	47.6 d	1.76 dt (10.4, 2.0)	46.3 (46.1)
10	45.0 s	_	44.6 (44.4)
11	23.3 t	1.55 ddd (14.0, 10.4, 2.0) (β) 1.99 ddd (14.0, 3.0, 1.6) (α)	23.4 (23.5)
12	53.2 d	2.98 m (W1/2=5.7)	53.4 (53.7)
13	208.6 s	_	210.2 (208.9)
14	51.8 d	2.30 d (2.8)	56.5 (56.6)
15	130.9 d	5.50 s	36.1 (36.0)
16	140.3 s	_	142.3 (143.8)
17	19.4 q	1.86 d (2.0)	110.3 (109.1)
18	22.5 q	1.16 s	22.7 (23.4)
19	51.6 t	1.88, 2.64 ABq 12.4	51.7 (51.9)
20	66.8 d	3.06 d (3.2)	67.2 (67.5)
NCH ₃	41.6 q	2.45 s	41.6 (41.5)

a: CDCl₃+CD₅N; b: C₆D₆+ CDCl₃.

References and notes

- 1. C. S. Peng, J. Z. Wang, X. X. Jian, F. P. Wang, Natural Products R & D, in press.
- 2. **Racemulodine** (1). a colorless needle, mp. 181-183 °C (cyclohexane-acetone), $[\alpha]_D^{17}$ -24.9 (c 0.2, EtOH). IR (KBr) cm⁻¹: 3400, 3030, 1721, 1691, 1606, 824. FABMS: *m/z* (%) 584 (100, M+1), 546 (44), 344 (18), 330 (25), 105 (54), 91 (8), 77 (19). ¹H- and ¹³C- NMR: **Table 1**.
- 3. F. P. Wang, Youji Huaxue, 1982, 3, 161.

Chong Sheng PENG et al.

- 4.
- 5.
- F. Sun, D. Q. Yu, *Youji HuaXue*, **1985**, *5*, 395.
 S. W. Plletier, B. S. Joshi, H. K. Desai, A. Panu. *Heterocycles*, **1986**, *24*, 1275.
 H. Ulubelen, S. W. Pelletier, A. H. Mericli, H. Mericli, H. Ozoelik, *J. Nat. Prod.*, **1995**, *58*, 1000 (2010) 6. 1555.

Received 13 December 1999